- Give wings to your career by choosing the best Artificial Intelligence Online Training provided by Croma Campus. The course will help you to learn Python libraries, Tensor Flow concepts, neural networks, binary classification, logistic regression, and many more.
Learn essential AI fundamental skills, machine learning algorithms, and more.
Enhances your predictive analytical skills, logical, or decision-making capabilities, etc.
Make yourself industry-ready and future-proof your career in AI.
You will understand all concepts from fundamental to advanced levels.
Get trained by the best industry practitioners who have years of experience.
- Croma Campus offers a comprehensive AI training program that will help you learn essential AI fundamental skills, machine learning algorithms, and more so that you can take your career ahead and acquire your dream job in leading industries.
- When you complete the course with us, you would be able to understand the AI challenges at the workplaces. You can also start applying for multiple posts and jobs globally.
Personalize your learning as per your convenience and requirements.
You will get interactive learning contents prepared as per the latest market trends.
Get a chance to learn from the most renowned faculty.
- The future demand for AI experts is really exciting. Even research reports say that there is a serious shortage of skilled AI professionals worldwide these days. And it couldnt be wrong to say that the salary packages are quite huge.
In India, the salary slab is different that usually lies between 5 to 8 lacs for freshers.
There are different salaries witnessed for different profiles.
You may prepare yourself for varied AI roles and earn a little extra if you are certified.
As you gain experience then you will grow in the same ratio and earn impeccably.
- Irrespective of the sizes of the business, everybody uses AI to automate their operations without any difficulty. With the AI certification course, you will learn all the fundamental concepts and grow like a PRO.
- AI has become a part of daily life these days and its apps can be seen everywhere around us. AI can be used for almost all industry verticals these days.
You can apply for different industries like media, healthcare, insurance, and more.
On the completion of the course, you can be hired by top recruiters.
Establish yourself as an in-demand AI professional and grow sharply in 2021.
- AI is the most growing field these days with endless job applications and its applications can be seen everywhere around. The usage of AI tools or machine learning algorithms is always appreciated by companies that witness great demand for skilled AI experts in the future.
Artificial Intelligence is the most amazing engine of advancement.
There is an unexpected demand for skilled AI experts in 2020 and beyond.
There is a huge shortage of skilled AI experts who could complete their work efficiently.
Today, almost all industries are planning to get into AI deployment
AI is truly amazing and the salary expectation in AI is also amazing.
- On the course completion, you become eligible to apply for different roles in AI. Let us see some of the most common job duties that you will practice during AI placement training online.
- Moving ahead, you should have the capability to understand the complex AI challenges at the workplaces. Also, you will know how to execute skills at the workplace.
You should know about various AI concepts, machine learning tools, logistic regression, neural networks, etc.
You should have a perfect idea of theory and practical concepts.
You should know about effective machine learning skills to design powerful AI systems.
- On the completion of AI certification training, you will get a certificate to validate your skills. Also, you will get recognition among top corporate giants. We will train you so that you can get the required skills and knowledge.
- Get Lucrative salary packages and leverage a dynamically updated and current Knowledge base. Once you complete the training get a chance to work with leading industries like TCS, IBM, Google, Microsoft, Accenture, Pitney Bowes, etc.
Our training certificate is accepted worldwide.
It helps you to climb the professional ladder
It depicts credibility, Increases earning potential, and makes you stand among millions.
- Other Artificial Intelligence Courses are
Why Should You Learn AI?
By registering here, I agree to Croma Campus Terms & Conditions and Privacy Policy
Course Duration
150 Hrs.
Flexible Batches For You
24-May-2025*
- Weekend
- SAT - SUN
- Mor | Aft | Eve - Slot
26-May-2025*
- Weekday
- MON - FRI
- Mor | Aft | Eve - Slot
21-May-2025*
- Weekday
- MON - FRI
- Mor | Aft | Eve - Slot
24-May-2025*
- Weekend
- SAT - SUN
- Mor | Aft | Eve - Slot
26-May-2025*
- Weekday
- MON - FRI
- Mor | Aft | Eve - Slot
21-May-2025*
- Weekday
- MON - FRI
- Mor | Aft | Eve - Slot
Course Price :
Timings Doesn't Suit You ?
We can set up a batch at your convenient time.
Program Core Credentials

Trainer Profiles
Industry Experts

Trained Students
10000+

Success Ratio
100%

Corporate Training
For India & Abroad

Job Assistance
100%
Batch Request
FOR QUERIES, FEEDBACK OR ASSISTANCE
Contact Croma Campus Learner Support
Best of support with us
CURRICULUM & PROJECTS
Artificial Intelligence Certification training
- Installation and Working with Python
- Understanding Python variables
- Python basic Operators
- Understanding the Python blocks.
- Python Comments, Multiline Comments.
- Python Indentation
- Understating the concepts of Operators
- Arithmetic
- Relational
- Logical
- Assignment
- Membership
- Identity
- Variables, expression condition and function
- Global and Local Variables in Python
- Packing and Unpacking Arguments
- Type Casting in Python
- Byte objects vs. string in Python
- Variable Scope
- Declaring and using Numeric data types
- Using string data type and string operations
- Understanding Non-numeric data types
- Understanding the concept of Casting and Boolean.
- Strings
- List
- Tuples
- Dictionary
- Sets
- Statements – if, else, elif
- How to use nested IF and Else in Python
- Loops
- Loops and Control Statements.
- Jumping Statements – Break, Continue, pass
- Looping techniques in Python
- How to use Range function in Loop
- Programs for printing Patterns in Python
- How to use if and else with Loop
- Use of Switch Function in Loop
- Elegant way of Python Iteration
- Generator in Python
- How to use nested Loop in Python
- Use If and Else in for and While Loop
- Examples of Looping with Break and Continue Statement
- How to use IN or NOT IN keyword in Python Loop.
- What is List.
- List Creation
- List Length
- List Append
- List Insert
- List Remove
- List Append & Extend using “+” and Keyword
- List Delete
- List related Keyword in Python
- List Reverse
- List Sorting
- List having Multiple Reference
- String Split to create a List
- List Indexing
- List Slicing
- List count and Looping
- List Comprehension and Nested Comprehension
- What is Tuple
- Tuple Creation
- Accessing Elements in Tuple
- Changing a Tuple
- Tuple Deletion
- Tuple Count
- Tuple Index
- Tuple Membership
- TupleBuilt in Function (Length, Sort)
- Dict Creation
- Dict Access (Accessing Dict Values)
- Dict Get Method
- Dict Add or Modify Elements
- Dict Copy
- Dict From Keys.
- Dict Items
- Dict Keys (Updating, Removing and Iterating)
- Dict Values
- Dict Comprehension
- Default Dictionaries
- Ordered Dictionaries
- Looping Dictionaries
- Dict useful methods (Pop, Pop Item, Str , Update etc.)
- What is Set
- Set Creation
- Add element to a Set
- Remove elements from a Set
- PythonSet Operations
- Frozen Sets
- What is Set
- Set Creation
- Add element to a Set
- Remove elements from a Set
- PythonSet Operations
- Python Syntax
- Function Call
- Return Statement
- Arguments in a function – Required, Default, Positional, Variable-length
- Write an Empty Function in Python –pass statement.
- Lamda/ Anonymous Function
- *args and **kwargs
- Help function in Python
- Scope and Life Time of Variable in Python Function
- Nested Loop in Python Function
- Recursive Function and Its Advantage and Disadvantage
- Organizing python codes using functions
- Organizing python projects into modules
- Importing own module as well as external modules
- Understanding Packages
- Random functions in python
- Programming using functions, modules & external packages
- Map, Filter and Reduce function with Lambda Function
- More example of Python Function
- Creation and working of decorator
- Idea and practical example of generator, use of generator
- Concept and working of Iterator
- Python Errors and Built-in-Exceptions
- Exception handing Try, Except and Finally
- Catching Exceptions in Python
- Catching Specic Exception in Python
- Raising Exception
- Try and Finally
- Opening a File
- Python File Modes
- Closing File
- Writing to a File
- Reading from a File
- Renaming and Deleting Files in Python
- Python Directory and File Management
- List Directories and Files
- Making New Directory
- Changing Directory
- Threading, Multi-threading
- Memory management concept of python
- working of Multi tasking system
- Different os function with thread
- SQL Database connection using
- Creating and searching tables
- Reading and Storing cong information on database
- Programming using database connections
- Working With Excel
- Reading an excel le using Python
- Writing to an excel sheet using Python
- Python| Reading an excel le
- Python | Writing an excel le
- Adjusting Rows and Column using Python
- ArithmeticOperation in Excel le.
- Play with Workbook, Sheets and Cells in Excel using Python
- Creating and Removing Sheets
- Formatting the Excel File Data
- More example of Python Function
- Check Dirs. (exist or not)
- How to split path and extension
- How to get user prole detail
- Get the path of Desktop, Documents, Downloads etc.
- Handle the File System Organization using OS
- How to get any les and folder’s details using OS
- Statistics
- Categorical Data
- Numerical Data
- Mean
- Median
- Mode
- Outliers
- Range
- Interquartile range
- Correlation
- Standard Deviation
- Variance
- Box plot
- Pandas
- Read data from Excel File using Pandas More Plotting, Date Time Indexing and writing to les
- How to get record specic records Using Pandas Adding & Resetting Columns, Mapping with function
- Using the Excel File class to read multiple sheets More Mapping, Filling Nonvalue’s
- Exploring the Data Plotting, Correlations, and Histograms
- Getting statistical information about the data Analysis Concepts, Handle the None Values
- Reading les with no header and skipping records Cumulative Sums and Value Counts, Ranking etc
- Reading a subset of columns Data Maintenance, Adding/Removing Cols and Rows
- Applying formulas on the columns Basic Grouping, Concepts of Aggre gate Function
- Complete Understanding of Pivot Table Data Slicing using iLoc and Loc property (Setting Indices)
- Under sting the Properties of Pivot Table in Pandas Advanced Reading CSVs/HTML, Binning, Categorical Data
- Exporting the results to Excel Joins
- Python | Pandas Data Frame Inner Join
- Under sting the properties of Data Frame Left Join (Left Outer Join)
- Indexing and Selecting Data with Pandas Right Join (Right Outer Join)
- Pandas | Merging, Joining and Concatenating Full Join (Full Outer Join)
- Pandas | Find Missing Data and Fill and Drop NA Appending Data Frame and Data
- Pandas | How to Group Data How to apply Lambda / Function on Data Frame
- Other Very Useful concepts of Pandas in Python Data Time Property in Pandas (More and More)
- Descriptive Statistics
- Sample vs Population Statistics
- Random variables
- Probability distribution functions
- Expected value
- Normal distribution
- Gaussian distribution
- Z-score
- Spread and Dispersion
- Correlation and Co-variance
- Need for structured exploratory data
- EDA framework for exploring the data and identifying any problems with the data (Data Audit Report)
- Identify missing data
- Identify outliers’ data
- Imbalanced Data Techniques
- Data Preparation
- Feature Engineering
- Feature Scaling, Feature Transformation and Dimensionality Reduction
- Datasets
- Dimensionality Reduction (PCA, ICA,LDA)
- Anomaly Detection
- Parameter Estimation
- Data and Knowledge
- Selected Applications in Data Mining
- Difference between Analysis and Analytics
- Concept of model in analytics and how it is used
- Common terminology used in Analytics & Modelling process
- Popular Modelling algorithms, Data Analytics Life cycle
- Types of Business problems - Mapping of Techniques
- SQL Server 2019 Installation
- Service Accounts & Use, Authentication Modes & Usage, Instance Congurations
- SQL Server Features & Purpose
- Using Management Studio (SSMS)
- Conguration Tools & SQLCMD
- Conventions & Collation
- SQL Database Architecture
- Database Creation using GUI
- Database Creation using T-SQL scripts
- DB Design using Files and File Groups
- File locations and Size parameters
- Database Structure modications
- SQL Server Database Tables
- Table creation using T-SQL Scripts
- Naming Conventions for Columns
- Single Row and Multi-Row Inserts
- Table Aliases
- Column Aliases & Usage
- Table creation using Schemas
- Basic INSERT
- UPDATE
- DELETE
- SELECT queries and Schemas
- Use of WHERE, IN and BETWEEN
- Variants of SELECT statement
- ORDER BY
- GROUPING
- HAVING
- ROWCOUNT and CUBE Functions
- Table creation using Constraints
- NULL and IDENTITY properties
- UNIQUE KEY Constraint and NOT NULL
- PRIMARY KEY Constraint & Usage
- CHECK and DEFAULT Constraints
- Naming Composite Primary Keys
- Disabling Constraints & Other Options
- Benets of Views in SQL Database
- Views on Tables and Views
- SCHEMA BINDING and ENCRYPTION
- Issues with Views and ALTER TABLE
- Common System Views and Metadata
- Common Dynamic Management views
- Working with JOINS inside views
- Need for Indexes & Usage
- Indexing Table & View Columns
- Index SCAN and SEEK
- INCLUDED Indexes & Usage
- Materializing Views (storage level)
- Composite Indexed Columns & Keys
- Indexes and Table Constraints
- Primary Keys & Non-Clustered Indexes
- Why to use Stored Procedures
- Types of Stored Procedures
- Use of Variables and parameters
- SCHEMABINDING and ENCRYPTION
- INPUT and OUTPUT parameters
- System level Stored Procedures
- Dynamic SQL and parameterization
- Scalar Valued Functions
- Types of Table Valued Functions
- SCHEMABINDING and ENCRYPTION
- System Functions and usage
- Date Functions
- Time Functions
- String and Operational Functions
- ROW_COUNT
- GROUPING Functions
- Why to use Triggers
- DML Triggers and Performance impact
- INSERTED and DELETED memory tables
- Data Audit operations & Sampling
- Database Triggers and Server Triggers
- Bulk Operations with Triggers
- Cursor declaration and Life cycle
- STATIC
- DYNAMIC
- SCROLL Cursors
- FORWARD_ONLY and LOCAL Cursors
- KEYSET Cursors with Complex SPs
- ACID Properties and Scope
- EXPLICIT Transaction types
- IMPLICIT Transactions and options
- Creation of Excel Sheet Data
- Range Name, Format Painter
- Conditional Formatting, Wrap Text, Merge & Centre
- Sort, Filter, Advance Filter
- Different type of Chart Creations
- Auditing, (Trace Precedents, Trace Dependents)Print Area
- Data Validations, Consolidate, Subtotal
- What if Analysis (Data Table, Goal Seek, Scenario)
- Solver, Freeze Panes
- Various Simple Functions in Excel(Sum, Average, Max, Min)
- Real Life Assignment work
- Advance Data Sorting
- Multi-level sorting
- Restoring data to original order after performing sorting
- Sort by icons
- Sort by colours
- Lookup Functions
- Lookup
- VLookup
- HLookup
- Subtotal, Multi-Level Subtotal
- Grouping Features
- Column Wise
- Row Wise
- Consolidation With Several Worksheets
- Filter
- Auto Filter
- Advance Filter
- Printing of Raw & Column Heading on Each Page
- Workbook Protection and Worksheet Protection
- Specified Range Protection in Worksheet
- Excel Data Analysis
- Goal Seek
- Scenario Manager
- Data Table
- Advance use of Data Tables in Excel
- Reporting and Information Representation
- Pivot Table
- Pivot Chat
- Slicer with Pivot Table & Chart
- Generating MIS Report In Excel
- Advance Functions of Excel
- Math & Trig Functions
- Text Functions
- Lookup & Reference Function
- Logical Functions & Date and Time Functions
- Database Functions
- Statistical Functions
- Financial Functions
- Functions for Calculation Depreciation
- Overview of BI concepts
- Why we need BI
- Introduction to SSBI
- SSBI Tools
- Why Power BI
- What is Power BI
- Building Blocks of Power BI
- Getting started with Power BI Desktop
- Get Power BI Tools
- Introduction to Tools and Terminology
- Dashboard in Minutes
- Interacting with your Dashboards
- Sharing Dashboards and Reports
- Power BI Desktop
- Extracting data from various sources
- Workspaces in Power BI
- Data Transformation
- Query Editor
- Connecting Power BI Desktop to our Data Sources
- Editing Rows
- Understanding Append Queries
- Editing Columns
- Replacing Values
- Formatting Data
- Pivoting and Unpivoting Columns
- Splitting Columns
- Creating a New Group for our Queries
- Introducing the Star Schema
- Duplicating and Referencing Queries
- Creating the Dimension Tables
- Entering Data Manually
- Merging Queries
- Finishing the Dimension Table
- Introducing the another DimensionTable
- Creating an Index Column
- Duplicating Columns and Extracting Information
- Creating Conditional Columns
- Creating the FACT Table
- Performing Basic Mathematical Operations
- Improving Performance and Loading Data into the Data Model
- Introduction to Modelling
- Modelling Data
- Manage Data Relationship
- Optimize Data Models
- Cardinality and Cross Filtering
- Default Summarization & Sort by
- Creating Calculated Columns
- Creating Measures & Quick Measures
- What is DAX
- Data Types in DAX
- Calculation Types
- Syntax, Functions, Context Options
- DAX Functions
- Date and Time
- Time Intelligence
- Information
- Logical
- Mathematical
- Statistical
- Text and Aggregate
- Measures in DAX
- Measures and Calculated Columns
- ROW Context and Filter Context in DAX
- Operators in DAX - Real-time Usage
- Quick Measures in DAX - Auto validations
- In-Memory Processing DAX Performance
- How to use Visual in Power BI
- What Are Custom Visuals
- Creating Visualisations and Colour Formatting
- Setting Sort Order
- Scatter & Bubble Charts & Play Axis
- Tooltips and Slicers, Timeline Slicers & Sync Slicers
- Cross Filtering and Highlighting
- Visual, Page and Report Level Filters
- Drill Down/Up
- Hierarchies and Reference/Constant Lines
- Tables, Matrices & Conditional Formatting
- KPI's, Cards & Gauges
- Map Visualizations
- Custom Visuals
- Managing and Arranging
- Drill through and Custom Report Themes
- Grouping and Binning and Selection Pane, Bookmarks & Buttons
- Data Binding and Power BI Report Server
- Why Dashboard and Dashboard vs Reports
- Creating Dashboards
- Conguring a Dashboard Dashboard Tiles, Pinning Tiles
- Power BI Q&A
- Quick Insights in Power BI
- Custom Data Gateways
- Exploring live connections to data with Power BI
- Connecting directly to SQL Server
- Connectivity with CSV & Text Files
- Excel with Power BI Connect Excel to Power BI, Power BI Publisher for Excel
- Content packs
- Update content packs
- Introduction and Sharing Options Overview
- Publish from Power BI Desktop and Publish to Web
- Share Dashboard with Power BI Service
- Workspaces (Power BI Pro) and Content Packs (Power BI Pro)
- Print or Save as PDF and Row Level Security (Power BI Pro)
- Export Data from a Visualization
- Export to PowerPoint and Sharing Options Summary
- Understanding Data Refresh
- Personal Gateway (Power BI Pro and 64-bit Windows)
- What is Machine Learning
- Machine Learning Use-Cases
- Machine Learning Process Flow
- Machine Learning Categories
- Classification and Regression
- Where we use classification model and where we use regression
- Regression Algorithms and its types
- Logistic Regression
- Evaluation Matrix of Regression Algorithm
- Implementing KNN
- Implementing Naïve Bayes Classifier
- Implementation and Introduction to Decision Tree using CARTand ID3
- Introduction to Ensemble Learning
- Random Forest algorithm using bagging and boosting
- Evaluation Matrix of classification algorithms (confusion matrix, r2score, Accuracy,f1-score,recall and precision
- Hyperparameter Optimization
- Grid Search vs. Random Search
- Introduction to Dimensionality
- Why Dimensionality Reduction
- PCA
- Factor Analysis
- Scaling dimensional model
- LDA
- ICA
- What is Clustering & its Use Cases
- What is K-means Clustering
- How does the K-means algorithm works
- How to do optimal clustering
- What is Hierarchical Clustering
- How does Hierarchical Clustering work
- What are Association Rules
- Association Rule Parameters
- Calculating Association Rule Parameters
- Recommendation Engines
- How do Recommendation Engines work
- Collaborative Filtering
- Content-Based Filtering
- Association Algorithms
- Implementation of Apriori Association Algorithm
- What is Reinforcement Learning
- Why Reinforcement Learning
- Elements of Reinforcement Learning
- Exploration vs. Exploitation dilemma
- Epsilon Greedy Algorithm
- Markov Decision Process (MDP)
- Q values and V values
- Q – Learning
- Values
- What is Time Series Analysis
- Importance of TSA
- Components of TSA
- What is Model Selection
- Need for Model Selection
- Cross Validation
- What is Boosting
- How do Boosting Algorithms work
- Types of Boosting Algorithms
- Overview of Text Mining
- Need of Text Mining
- Natural Language Processing (NLP) in Text Mining
- Applications of Text Mining
- OS Module
- Reading, Writing to text and word files
- Setting the NLTK Environment
- Accessing the NLTK Corpora
- Tokenization
- Frequency Distribution
- Different Types of Tokenizers
- Bigrams, Trigrams & Ngrams
- Stemming
- Lemmatization
- Stopwords
- POS Tagging
- Named Entity Recognition
- Syntax Trees
- Chunking
- Chinking
- Context Free Grammars (CFG)
- Automating Text Paraphrasing
- Machine Learning: Brush Up
- Bag of Words
- Count Vectorizer
- Term Frequency (TF)
- Inverse Document Frequency (IDF)
- Introduction to TensorFlow 2.x
- Installing TensorFlow 2.x
- Defining Sequence model layers
- Activation Function
- Layer Types
- Model Compilation
- Model Optimizer
- Model Loss Function
- Model Training
- Digit Classification using Simple Neural Network in TensorFlow 2.x
- Improving the model
- Adding Hidden Layer
- Adding Dropout
- Using Adam Optimizer
- What is Deep Learning
- Curse of Dimensionality
- Machine Learning vs. Deep Learning
- Use cases of Deep Learning
- Human Brain vs. Neural Network
- What is Perceptron
- Learning Rate
- Epoch
- Batch Size
- Activation Function
- Single Layer Perceptron
- What is NN
- Types of NN
- Creation of simple neural network using tensorflow
- Image Classification Example
- What is Convolution
- Convolutional Layer Network
- Convolutional Layer
- Filtering
- ReLU Layer
- Pooling
- Data Flattening
- Fully Connected Layer
- Predicting a cat or a dog
- Saving and Loading a Model
- Face Detection using OpenCV
- Introduction to Vision
- Importance of Image Processing
- Image Processing Challenges – Interclass Variation, ViewPoint Variation, Illumination, Background Clutter, Occlusion & Number of Large Categories
- Introduction to Image – Image Transformation, Image Processing Operations & Simple Point Operations
- Noise Reduction – Moving Average & 2D Moving Average
- Image Filtering – Linear & Gaussian Filtering
- Disadvantage of Correlation Filter
- Introduction to Convolution
- Boundary Effects – Zero, Wrap, Clamp & Mirror
- Image Sharpening
- Template Matching
- Edge Detection – Image filtering, Origin of Edges, Edges in images as Functions, Sobel Edge Detector
- Effect of Noise
- Laplacian Filter
- Smoothing with Gaussian
- LOG Filter – Blob Detection
- Noise – Reduction using Salt & Pepper Noise using Gaussian Filter
- Nonlinear Filters
- Bilateral Filters
- Canny Edge Detector - Non Maximum Suppression, Hysteresis Thresholding
- Image Sampling & Interpolation – Image Sub Sampling, Image Aliasing, Nyquist Limit, Wagon Wheel Effect, Down Sampling with Gaussian Filter, Image Pyramid, Image Up Sampling
- Image Interpolation – Nearest Neighbour Interpolation, Linear Interpolation, Bilinear Interpolation & Cubic Interpolation
- Introduction to the dnn module
- Deep Learning Deployment Toolkit
- Use of DLDT with OpenCV4.0
- OpenVINO Toolkit
- Introduction
- Model Optimization of pre-trained models
- Inference Engine and Deployment process
- In this module, you will learn what Cloud Computing is and what are the different models of Cloud Computing along with the key differentiators of different models. We will also introduce you to virtual world of AWS along with AWS key vocabulary, services and concepts.
- A Short history
- Client Server Computing Concepts
- Challenges with Distributed Computing
- Introduction to Cloud Computing
- Why Cloud Computing
- Benefits of Cloud Computing
+ More Lessons
Mock Interviews

Phone (For Voice Call):
+91-971 152 6942WhatsApp (For Call & Chat):
+919711526942SELF ASSESSMENT
Learn, Grow & Test your skill with Online Assessment Exam to
achieve your Certification Goals

FAQ's
Artificial intelligence can be defined as the discipline of computer science that emphasizes the creation of intelligent machines that work and reacts like humans.
If you have prior experience in e-commerce, Data Analytics, and Data Science, you can opt for artificial intelligence. Don’t panic, even if you are fresher but you should have the right zeal to continue in the AI space.
For taking up this Artificial Intelligence course, there are no specific prerequisites.
The candidate should also possess basic knowledge of computers. A bachelor’s degree in Mathematics/ Statistics/Computer Science/ Data Science is preferred.
After joining, the student can download the course material easily or out team will get in touch with you for the required help.

- - Build an Impressive Resume
- - Get Tips from Trainer to Clear Interviews
- - Attend Mock-Up Interviews with Experts
- - Get Interviews & Get Hired
If yes, Register today and get impeccable Learning Solutions!

Training Features
Instructor-led Sessions
The most traditional way to learn with increased visibility,monitoring and control over learners with ease to learn at any time from internet-connected devices.
Real-life Case Studies
Case studies based on top industry frameworks help you to relate your learning with real-time based industry solutions.
Assignment
Adding the scope of improvement and fostering the analytical abilities and skills through the perfect piece of academic work.
Lifetime Access
Get Unlimited access of the course throughout the life providing the freedom to learn at your own pace.
24 x 7 Expert Support
With no limits to learn and in-depth vision from all-time available support to resolve all your queries related to the course.

Certification
Each certification associated with the program is affiliated with the top universities providing edge to gain epitome in the course.
Showcase your Course Completion Certificate to Recruiters
-
Training Certificate is Govern By 12 Global Associations.
-
Training Certificate is Powered by “Wipro DICE ID”
-
Training Certificate is Powered by "Verifiable Skill Credentials"




