GUIDE ME

Learn to extract business insights from big data. Join now to learn from an AI expert. Our AI Course in Delhi covers latest trends of AI

4.9 out of 5 based on 19758 votes
google4.2/5
Sulekha4.8/5
Urbonpro4.6/5
Just Dial4.3/5
Fb4.5/5

Course Duration

150 Hrs.

Live Project

9 Project

Certification Pass

Guaranteed

Training Format

Live Online /Self-Paced/Classroom

Watch Live Classes

Data Science & AI

Speciality

prof trained

200+

Professionals Trained
batch image

3+

Batches every month
country image

20+

Countries & Counting
corporate

100+

Corporate Served

  • Artificial Intelligence is a branch of computer science that targets developing and handling techniques that eventually helps us to take effective decisions and carry out actions on behalf of humans. In the recent years, this specific technology has grabbed immense attention as its making all our lives easier by introducing smart technologies each day.
  • So, if you want to explore this field, then acquiring a gist of AI Courses Delhi will be useful for your career in various ways. You will get the opportunity to learn a lot of new things, skills and information as well.
  • Well, getting started with Artificial Intelligence Training in Delhi will eventually help you in uplifting your career in various ways. So, if you are looking beneficial for you if you want to turn into a skilled AI Developer or AI Engineer, and want to have a positive growth.

Artificial Intelligence Training in Delhi

About-Us-Course

  • By getting started with Artificial Intelligence Training Institute in Delhi, you will come across some important information, its every section, and sub-section in a much better way.
    • First, you will receive sessions regarding its basic information and definition.

      Furthermore, you will also receive sessions concerning 'Python for Data Analysis.

      Your information concerning Math for Machine Learning will also get enhanced.

      Our team will also help you in imbibing information concerning Data Visualization in Python.

      Your overall information regarding Data Analysis using SQL, and advanced SQL will get uplifted.

  • The salary package in this field is quite a high right from the initial level. So, you need not have to worry at all as our Artificial Intelligence Training in Delhi will help you grab better job opportunities in the industry.
    • In the initial level, you will earn around Rs 7 to Rs 7.5 Lakh annually.

      Later on, you can earn up to Rs. 55 Lakh if you have acquired the latest skills and information.

      Post imbibing detailed information regarding AI, you will turn into a pro.

      Post having this skill, you will be able to enter into a multi-national company that will also offer you a quite higher salary package.

  • Presently, you will find various AI jobs with skilled professionals to fill them, yet the grant is a bit low, and demand is quite high. So, approaching Artificial Intelligence Training in Delhi will be fruitful for your career as it will not only enhance your information concerning AI, but will also help you get updated with the latest information, and acquire skills related to its other job roles.
    • Imbibing in-depth information concerning this technology will eventually turn you into an expert.

      Enrolling in this course will allow you to examine this subject right from the scratch.

      By acquiring information Artificial Intelligence Course in Delhi, you will end up acquiring a higher position and in a good workplace.

      Your fundamental information will also get strengthened.

      You will have numerous job opportunities in hand.

  • An AI Developer is supposed to execute a wide series of tasks. So, if you also want to turn into a skilled AI Engineer, getting started with Artificial Intelligence Course in Delhi & Machine Learning Training in Delhi will be suitable for your career, as it will help you know each role in a much-explained manner.
    • You will also have to convert the machine learning models into application program interfaces (APIs) so that other applications can utilize them effectively.

      Well, working as an AI Engineer will also indulge you in building AI models from the beginning and help the different elements of the workspace like- Product Managers and stakeholders analyze what results they gain from the model.

      You will also have to develop data ingestion and data transformation infrastructure.

      Automating the infrastructure that the data science team utilizes will also be counted among your main job role.

  • Presently, you will find numerous reasons to get started with Artificial Intelligence Training in Delhi course. Moreover, by obtaining information regarding Artificial Intelligence course, you will grow in this field quicker and acquire a higher position as well. By associating with a proper Artificial Intelligence Training Institute in Delhi, you will get the chance to know some of the main benefits of learning this specific course.
    • Your salary package will further get increased.

      Your basic information concerning AI will get strengthened.

      You will always have various jobs offers in hand.

      Further, you will be able to turn into a freelancer and make a good additional income as well.

  • At this age, you will find numerous companies hiring skilled AI Developers. So, if youre aim is to acquire a job post completing the Artificial Intelligence Online Training, then you genuinely don't have to concern at all as you will surely end up getting into a well-set-up company as theres seriously a space for skilled candidates, and we will also set your interviews with established companies. So, getting in touch with Artificial Intelligence Training Institute in Delhi will only uplift your career graph.
    • Concentrix, Quest Global Engineering Services, Masters India, etc. are some of the good set-ups hiring skilled candidates.

      In fact, our trainers will thoroughly help you passing the interview by often conducting a mock test.

      The main aim of this course is to assist you to get settled in a well-established organization.

  • For the past few years, Croma Campus has been considered the best Artificial Intelligence Training Institute in Delhi. We, at Croma Campus generally aims at delivering qualitative training along with enough study material and numerous instances. So, if you are also looking to acquire detailed information concerning AI, getting associated with a good Artificial Intelligence Training Institute in Delhi Croma Campus will be an ideal move toward your career.
    • Associating with us will give you enough chances to obtain the latest information concerning the Artificial Intelligence course.

      Here, you will obtain information regarding its related course.

      Croma Campus will offer you placement assistance.

      Well, right from the beginning, our faculty members will give you suggestive tips to clear the interview process.

Why you should get started with Artificial Intelligence Course?

Request more information

By registering here, I agree to Croma Campus Terms & Conditions and Privacy Policy

hourglassCourse Duration

150 Hrs.
Know More...
Weekday1 Hr/Day
Weekend2 Hr/Day
Training ModeClassroom/Online
Flexible Batches For You
  • flexible-focus-icon

    24-May-2025*

  • Weekend
  • SAT - SUN
  • Mor | Aft | Eve - Slot
  • flexible-white-icon

    26-May-2025*

  • Weekday
  • MON - FRI
  • Mor | Aft | Eve - Slot
  • flexible-white-icon

    21-May-2025*

  • Weekday
  • MON - FRI
  • Mor | Aft | Eve - Slot
  • flexible-focus-icon

    24-May-2025*

  • Weekend
  • SAT - SUN
  • Mor | Aft | Eve - Slot
  • flexible-white-icon

    26-May-2025*

  • Weekday
  • MON - FRI
  • Mor | Aft | Eve - Slot
  • flexible-white-icon

    21-May-2025*

  • Weekday
  • MON - FRI
  • Mor | Aft | Eve - Slot
Course Price :
For Indian
72,000 64,800 10 % OFF, Save 7200
trainerExpires in: 00D:00H:00M:00S
Program fees are indicative only* Know more

Timings Doesn't Suit You ?

We can set up a batch at your convenient time.

Program Core Credentials

user

Trainer Profiles

Industry Experts

trainer

Trained Students

10000+

industry

Success Ratio

100%

Corporate Training

For India & Abroad

abrord

Job Assistance

100%

Batch Request

FOR QUERIES, FEEDBACK OR ASSISTANCE

Contact Croma Campus Learner Support

Best of support with us

Phone (For Voice Call)

+919711526942

WhatsApp (For Call & Chat)

+91-9711526942

CURRICULUM & PROJECTS

Artificial Intelligence Certification training

    Introduction To Python

    • Installation and Working with Python
    • Understanding Python variables
    • Python basic Operators
    • Understanding the Python blocks.

    Python Keyword and Identiers

    • Python Comments, Multiline Comments.
    • Python Indentation
    • Understating the concepts of Operators
    • Arithmetic
    • Relational
    • Logical
    • Assignment
    • Membership
    • Identity

    Introduction To Variables

    • Variables, expression condition and function
    • Global and Local Variables in Python
    • Packing and Unpacking Arguments
    • Type Casting in Python
    • Byte objects vs. string in Python
    • Variable Scope

    Python Data Type

    • Declaring and using Numeric data types
    • Using string data type and string operations
    • Understanding Non-numeric data types
    • Understanding the concept of Casting and Boolean.
    • Strings
    • List
    • Tuples
    • Dictionary
    • Sets

    Control Structure & Flow

    • Statements – if, else, elif
    • How to use nested IF and Else in Python
    • Loops
    • Loops and Control Statements.
    • Jumping Statements – Break, Continue, pass
    • Looping techniques in Python
    • How to use Range function in Loop
    • Programs for printing Patterns in Python
    • How to use if and else with Loop
    • Use of Switch Function in Loop
    • Elegant way of Python Iteration
    • Generator in Python
    • How to use nested Loop in Python
    • Use If and Else in for and While Loop
    • Examples of Looping with Break and Continue Statement
    • How to use IN or NOT IN keyword in Python Loop.

    List

    • What is List.
    • List Creation
    • List Length
    • List Append
    • List Insert
    • List Remove
    • List Append & Extend using “+” and Keyword
    • List Delete
    • List related Keyword in Python
    • List Reverse
    • List Sorting
    • List having Multiple Reference
    • String Split to create a List
    • List Indexing
    • List Slicing
    • List count and Looping
    • List Comprehension and Nested Comprehension

    Tuple

    • What is Tuple
    • Tuple Creation
    • Accessing Elements in Tuple
    • Changing a Tuple
    • Tuple Deletion
    • Tuple Count
    • Tuple Index
    • Tuple Membership
    • TupleBuilt in Function (Length, Sort)

    Dictionary

    • Dict Creation
    • Dict Access (Accessing Dict Values)
    • Dict Get Method
    • Dict Add or Modify Elements
    • Dict Copy
    • Dict From Keys.
    • Dict Items
    • Dict Keys (Updating, Removing and Iterating)
    • Dict Values
    • Dict Comprehension
    • Default Dictionaries
    • Ordered Dictionaries
    • Looping Dictionaries
    • Dict useful methods (Pop, Pop Item, Str , Update etc.)

    Sets

    • What is Set
    • Set Creation
    • Add element to a Set
    • Remove elements from a Set
    • PythonSet Operations
    • Frozen Sets

    Strings

    • What is Set
    • Set Creation
    • Add element to a Set
    • Remove elements from a Set
    • PythonSet Operations

    Python Function, Modules and Packages

    • Python Syntax
    • Function Call
    • Return Statement
    • Arguments in a function – Required, Default, Positional, Variable-length
    • Write an Empty Function in Python –pass statement.
    • Lamda/ Anonymous Function
    • *args and **kwargs
    • Help function in Python
    • Scope and Life Time of Variable in Python Function
    • Nested Loop in Python Function
    • Recursive Function and Its Advantage and Disadvantage
    • Organizing python codes using functions
    • Organizing python projects into modules
    • Importing own module as well as external modules
    • Understanding Packages
    • Random functions in python
    • Programming using functions, modules & external packages
    • Map, Filter and Reduce function with Lambda Function
    • More example of Python Function

    Decorator, Generator and Iterator

    • Creation and working of decorator
    • Idea and practical example of generator, use of generator
    • Concept and working of Iterator

    Python Exception Handling

    • Python Errors and Built-in-Exceptions
    • Exception handing Try, Except and Finally
    • Catching Exceptions in Python
    • Catching Specic Exception in Python
    • Raising Exception
    • Try and Finally

    Python File Handling

    • Opening a File
    • Python File Modes
    • Closing File
    • Writing to a File
    • Reading from a File
    • Renaming and Deleting Files in Python
    • Python Directory and File Management
    • List Directories and Files
    • Making New Directory
    • Changing Directory

    Memory management using python

    • Threading, Multi-threading
    • Memory management concept of python
    • working of Multi tasking system
    • Different os function with thread

    Python Database Interaction

    • SQL Database connection using
    • Creating and searching tables
    • Reading and Storing cong information on database
    • Programming using database connections

    Reading an excel

    • Working With Excel
    • Reading an excel le using Python
    • Writing to an excel sheet using Python
    • Python| Reading an excel le
    • Python | Writing an excel le
    • Adjusting Rows and Column using Python
    • ArithmeticOperation in Excel le.
    • Play with Workbook, Sheets and Cells in Excel using Python
    • Creating and Removing Sheets
    • Formatting the Excel File Data
    • More example of Python Function

    Complete Understanding of OS Module of Python

    • Check Dirs. (exist or not)
    • How to split path and extension
    • How to get user prole detail
    • Get the path of Desktop, Documents, Downloads etc.
    • Handle the File System Organization using OS
    • How to get any les and folder’s details using OS
Get full course syllabus in your inbox

    Data Analysis and Visualization using Pandas.

    • Statistics
      • Categorical Data
      • Numerical Data
      • Mean
      • Median
      • Mode
      • Outliers
      • Range
      • Interquartile range
      • Correlation
      • Standard Deviation
      • Variance
      • Box plot
    • Pandas
      • Read data from Excel File using Pandas More Plotting, Date Time Indexing and writing to les
      • How to get record specic records Using Pandas Adding & Resetting Columns, Mapping with function
      • Using the Excel File class to read multiple sheets More Mapping, Filling Nonvalue’s
      • Exploring the Data Plotting, Correlations, and Histograms
      • Getting statistical information about the data Analysis Concepts, Handle the None Values
      • Reading les with no header and skipping records Cumulative Sums and Value Counts, Ranking etc
      • Reading a subset of columns Data Maintenance, Adding/Removing Cols and Rows
      • Applying formulas on the columns Basic Grouping, Concepts of Aggre gate Function
      • Complete Understanding of Pivot Table Data Slicing using iLoc and Loc property (Setting Indices)
      • Under sting the Properties of Pivot Table in Pandas Advanced Reading CSVs/HTML, Binning, Categorical Data
      • Exporting the results to Excel Joins
      • Python | Pandas Data Frame Inner Join
      • Under sting the properties of Data Frame Left Join (Left Outer Join)
      • Indexing and Selecting Data with Pandas Right Join (Right Outer Join)
      • Pandas | Merging, Joining and Concatenating Full Join (Full Outer Join)
      • Pandas | Find Missing Data and Fill and Drop NA Appending Data Frame and Data
      • Pandas | How to Group Data How to apply Lambda / Function on Data Frame
      • Other Very Useful concepts of Pandas in Python Data Time Property in Pandas (More and More)
Get full course syllabus in your inbox

    Introduction to Statistics

    • Descriptive Statistics
    • Sample vs Population Statistics
    • Random variables
    • Probability distribution functions
    • Expected value
    • Normal distribution
    • Gaussian distribution
    • Z-score
    • Spread and Dispersion
    • Correlation and Co-variance

    EDA (Exploratory Data Analysis)

    • Need for structured exploratory data
    • EDA framework for exploring the data and identifying any problems with the data (Data Audit Report)
    • Identify missing data
    • Identify outliers’ data
    • Imbalanced Data Techniques

    Data Pre-Processing & Data Mining

    • Data Preparation
    • Feature Engineering
    • Feature Scaling, Feature Transformation and Dimensionality Reduction
    • Datasets
    • Dimensionality Reduction (PCA, ICA,LDA)
    • Anomaly Detection
    • Parameter Estimation
    • Data and Knowledge
    • Selected Applications in Data Mining

    Introduction to Predictive Modelling

    • Difference between Analysis and Analytics
    • Concept of model in analytics and how it is used
    • Common terminology used in Analytics & Modelling process
    • Popular Modelling algorithms, Data Analytics Life cycle
    • Types of Business problems - Mapping of Techniques
Get full course syllabus in your inbox

    SQL Server Fundamentals

    • SQL Server 2019 Installation
    • Service Accounts & Use, Authentication Modes & Usage, Instance Congurations
    • SQL Server Features & Purpose
    • Using Management Studio (SSMS)
    • Conguration Tools & SQLCMD
    • Conventions & Collation

    SQL Server 2019 Database Design

    • SQL Database Architecture
    • Database Creation using GUI
    • Database Creation using T-SQL scripts
    • DB Design using Files and File Groups
    • File locations and Size parameters
    • Database Structure modications

    SQL Tables in MS SQL Server

    • SQL Server Database Tables
    • Table creation using T-SQL Scripts
    • Naming Conventions for Columns
    • Single Row and Multi-Row Inserts
    • Table Aliases
    • Column Aliases & Usage
    • Table creation using Schemas
    • Basic INSERT
    • UPDATE
    • DELETE
    • SELECT queries and Schemas
    • Use of WHERE, IN and BETWEEN
    • Variants of SELECT statement
    • ORDER BY
    • GROUPING
    • HAVING
    • ROWCOUNT and CUBE Functions

    Data Validation and Constraints

    • Table creation using Constraints
    • NULL and IDENTITY properties
    • UNIQUE KEY Constraint and NOT NULL
    • PRIMARY KEY Constraint & Usage
    • CHECK and DEFAULT Constraints
    • Naming Composite Primary Keys
    • Disabling Constraints & Other Options

    Views and Row Data Security

    • Benets of Views in SQL Database
    • Views on Tables and Views
    • SCHEMA BINDING and ENCRYPTION
    • Issues with Views and ALTER TABLE
    • Common System Views and Metadata
    • Common Dynamic Management views
    • Working with JOINS inside views

    Indexes and Query tuning

    • Need for Indexes & Usage
    • Indexing Table & View Columns
    • Index SCAN and SEEK
    • INCLUDED Indexes & Usage
    • Materializing Views (storage level)
    • Composite Indexed Columns & Keys
    • Indexes and Table Constraints
    • Primary Keys & Non-Clustered Indexes

    Stored Procedures and Benets

    • Why to use Stored Procedures
    • Types of Stored Procedures
    • Use of Variables and parameters
    • SCHEMABINDING and ENCRYPTION
    • INPUT and OUTPUT parameters
    • System level Stored Procedures
    • Dynamic SQL and parameterization

    System functions and Usage

    • Scalar Valued Functions
    • Types of Table Valued Functions
    • SCHEMABINDING and ENCRYPTION
    • System Functions and usage
    • Date Functions
    • Time Functions
    • String and Operational Functions
    • ROW_COUNT
    • GROUPING Functions

    Triggers, cursors, memory limitations

    • Why to use Triggers
    • DML Triggers and Performance impact
    • INSERTED and DELETED memory tables
    • Data Audit operations & Sampling
    • Database Triggers and Server Triggers
    • Bulk Operations with Triggers

    Cursors and Memory Limitations

    • Cursor declaration and Life cycle
    • STATIC
    • DYNAMIC
    • SCROLL Cursors
    • FORWARD_ONLY and LOCAL Cursors
    • KEYSET Cursors with Complex SPs

    Transactions Management

    • ACID Properties and Scope
    • EXPLICIT Transaction types
    • IMPLICIT Transactions and options
Get full course syllabus in your inbox

    Understanding Concepts of Excel

    • Creation of Excel Sheet Data
    • Range Name, Format Painter
    • Conditional Formatting, Wrap Text, Merge & Centre
    • Sort, Filter, Advance Filter
    • Different type of Chart Creations
    • Auditing, (Trace Precedents, Trace Dependents)Print Area
    • Data Validations, Consolidate, Subtotal
    • What if Analysis (Data Table, Goal Seek, Scenario)
    • Solver, Freeze Panes
    • Various Simple Functions in Excel(Sum, Average, Max, Min)
    • Real Life Assignment work

    Ms Excel Advance

    • Advance Data Sorting
    • Multi-level sorting
    • Restoring data to original order after performing sorting
    • Sort by icons
    • Sort by colours
    • Lookup Functions
      • Lookup
      • VLookup
      • HLookup
    • Subtotal, Multi-Level Subtotal
    • Grouping Features
      • Column Wise
      • Row Wise
    • Consolidation With Several Worksheets
    • Filter
      • Auto Filter
      • Advance Filter
    • Printing of Raw & Column Heading on Each Page
    • Workbook Protection and Worksheet Protection
    • Specified Range Protection in Worksheet
    • Excel Data Analysis
      • Goal Seek
      • Scenario Manager
    • Data Table
      • Advance use of Data Tables in Excel
      • Reporting and Information Representation
    • Pivot Table
      • Pivot Chat
      • Slicer with Pivot Table & Chart
    • Generating MIS Report In Excel
      • Advance Functions of Excel
      • Math & Trig Functions
    • Text Functions
    • Lookup & Reference Function
    • Logical Functions & Date and Time Functions
    • Database Functions
    • Statistical Functions
    • Financial Functions
    • Functions for Calculation Depreciation
Get full course syllabus in your inbox

    Introduction to Power BI

    • Overview of BI concepts
    • Why we need BI
    • Introduction to SSBI
    • SSBI Tools
    • Why Power BI
    • What is Power BI
    • Building Blocks of Power BI
    • Getting started with Power BI Desktop
    • Get Power BI Tools
    • Introduction to Tools and Terminology
    • Dashboard in Minutes
    • Interacting with your Dashboards
    • Sharing Dashboards and Reports

    Power BI Desktop

    • Power BI Desktop
    • Extracting data from various sources
    • Workspaces in Power BI

    Power BI Data Transformation

    • Data Transformation
    • Query Editor
    • Connecting Power BI Desktop to our Data Sources
    • Editing Rows
    • Understanding Append Queries
    • Editing Columns
    • Replacing Values
    • Formatting Data
    • Pivoting and Unpivoting Columns
    • Splitting Columns
    • Creating a New Group for our Queries
    • Introducing the Star Schema
    • Duplicating and Referencing Queries
    • Creating the Dimension Tables
    • Entering Data Manually
    • Merging Queries
    • Finishing the Dimension Table
    • Introducing the another DimensionTable
    • Creating an Index Column
    • Duplicating Columns and Extracting Information
    • Creating Conditional Columns
    • Creating the FACT Table
    • Performing Basic Mathematical Operations
    • Improving Performance and Loading Data into the Data Model

    Modelling with Power BI

    • Introduction to Modelling
    • Modelling Data
    • Manage Data Relationship
    • Optimize Data Models
    • Cardinality and Cross Filtering
    • Default Summarization & Sort by
    • Creating Calculated Columns
    • Creating Measures & Quick Measures

    Data Analysis Expressions (DAX)

    • What is DAX
    • Data Types in DAX
    • Calculation Types
    • Syntax, Functions, Context Options
    • DAX Functions
    • Date and Time
    • Time Intelligence
    • Information
    • Logical
    • Mathematical
    • Statistical
    • Text and Aggregate
    • Measures in DAX
    • Measures and Calculated Columns
    • ROW Context and Filter Context in DAX
    • Operators in DAX - Real-time Usage
    • Quick Measures in DAX - Auto validations
    • In-Memory Processing DAX Performance

    Power BI Desktop Visualisations

    • How to use Visual in Power BI
    • What Are Custom Visuals
    • Creating Visualisations and Colour Formatting
    • Setting Sort Order
    • Scatter & Bubble Charts & Play Axis
    • Tooltips and Slicers, Timeline Slicers & Sync Slicers
    • Cross Filtering and Highlighting
    • Visual, Page and Report Level Filters
    • Drill Down/Up
    • Hierarchies and Reference/Constant Lines
    • Tables, Matrices & Conditional Formatting
    • KPI's, Cards & Gauges
    • Map Visualizations
    • Custom Visuals
    • Managing and Arranging
    • Drill through and Custom Report Themes
    • Grouping and Binning and Selection Pane, Bookmarks & Buttons
    • Data Binding and Power BI Report Server

    Introduction to Power BI Dashboard and Data Insights

    • Why Dashboard and Dashboard vs Reports
    • Creating Dashboards
    • Conguring a Dashboard Dashboard Tiles, Pinning Tiles
    • Power BI Q&A
    • Quick Insights in Power BI

    Direct Connectivity

    • Custom Data Gateways
    • Exploring live connections to data with Power BI
    • Connecting directly to SQL Server
    • Connectivity with CSV & Text Files
    • Excel with Power BI Connect Excel to Power BI, Power BI Publisher for Excel
    • Content packs
    • Update content packs

    Publishing and Sharing

    • Introduction and Sharing Options Overview
    • Publish from Power BI Desktop and Publish to Web
    • Share Dashboard with Power BI Service
    • Workspaces (Power BI Pro) and Content Packs (Power BI Pro)
    • Print or Save as PDF and Row Level Security (Power BI Pro)
    • Export Data from a Visualization
    • Export to PowerPoint and Sharing Options Summary

    Refreshing Datasets

    • Understanding Data Refresh
    • Personal Gateway (Power BI Pro and 64-bit Windows)
Get full course syllabus in your inbox

    Introduction to Machine Learning

    • What is Machine Learning
    • Machine Learning Use-Cases
    • Machine Learning Process Flow
    • Machine Learning Categories

    Supervised Learning

    • Classification and Regression
    • Where we use classification model and where we use regression
    • Regression Algorithms and its types

    Regression Algorithm

    • Logistic Regression
    • Evaluation Matrix of Regression Algorithm

    Classification Algorithm

    • Implementing KNN
    • Implementing Naïve Bayes Classifier
    • Implementation and Introduction to Decision Tree using CARTand ID3
    • Introduction to Ensemble Learning
    • Random Forest algorithm using bagging and boosting
    • Evaluation Matrix of classification algorithms (confusion matrix, r2score, Accuracy,f1-score,recall and precision

    Optimization Algorithm

    • Hyperparameter Optimization
    • Grid Search vs. Random Search

    Dimensionality Reduction

    • Introduction to Dimensionality
    • Why Dimensionality Reduction
    • PCA
    • Factor Analysis
    • Scaling dimensional model
    • LDA
    • ICA

    Unsupervised Learning

    • What is Clustering & its Use Cases
    • What is K-means Clustering
    • How does the K-means algorithm works
    • How to do optimal clustering
    • What is Hierarchical Clustering
    • How does Hierarchical Clustering work

    Association Rules Mining and Recommendation Systems

    • What are Association Rules
    • Association Rule Parameters
    • Calculating Association Rule Parameters
    • Recommendation Engines
    • How do Recommendation Engines work
    • Collaborative Filtering
    • Content-Based Filtering
    • Association Algorithms
    • Implementation of Apriori Association Algorithm

    Reinforcement Learning

    • What is Reinforcement Learning
    • Why Reinforcement Learning
    • Elements of Reinforcement Learning
    • Exploration vs. Exploitation dilemma
    • Epsilon Greedy Algorithm
    • Markov Decision Process (MDP)
    • Q values and V values
    • Q – Learning
    • Values

    Time Series Analysis

    • What is Time Series Analysis
    • Importance of TSA
    • Components of TSA

    Model Selection and Boosting

    • What is Model Selection
    • Need for Model Selection
    • Cross Validation
    • What is Boosting
    • How do Boosting Algorithms work
    • Types of Boosting Algorithms
Get full course syllabus in your inbox

    Introduction to Text Mining and NLP

    • Overview of Text Mining
    • Need of Text Mining
    • Natural Language Processing (NLP) in Text Mining
    • Applications of Text Mining
    • OS Module
    • Reading, Writing to text and word files
    • Setting the NLTK Environment
    • Accessing the NLTK Corpora

    Extracting, Cleaning and Preprocessing Text

    • Tokenization
    • Frequency Distribution
    • Different Types of Tokenizers
    • Bigrams, Trigrams & Ngrams
    • Stemming
    • Lemmatization
    • Stopwords
    • POS Tagging
    • Named Entity Recognition

    Analyzing Sentence Structure

    • Syntax Trees
    • Chunking
    • Chinking
    • Context Free Grammars (CFG)
    • Automating Text Paraphrasing

    Text Classification - I

    • Machine Learning: Brush Up
    • Bag of Words
    • Count Vectorizer
    • Term Frequency (TF)
    • Inverse Document Frequency (IDF)

    Getting Started with TensorFlow 2.0

    • Introduction to TensorFlow 2.x
    • Installing TensorFlow 2.x
    • Defining Sequence model layers
    • Activation Function
    • Layer Types
    • Model Compilation
    • Model Optimizer
    • Model Loss Function
    • Model Training
    • Digit Classification using Simple Neural Network in TensorFlow 2.x
    • Improving the model
    • Adding Hidden Layer
    • Adding Dropout
    • Using Adam Optimizer

    Introduction to Deep Learning

    • What is Deep Learning
    • Curse of Dimensionality
    • Machine Learning vs. Deep Learning
    • Use cases of Deep Learning
    • Human Brain vs. Neural Network
    • What is Perceptron
    • Learning Rate
    • Epoch
    • Batch Size
    • Activation Function
    • Single Layer Perceptron

    Neural Networks

    • What is NN
    • Types of NN
    • Creation of simple neural network using tensorflow

    Convolution Neural Network

    • Image Classification Example
    • What is Convolution
    • Convolutional Layer Network
    • Convolutional Layer
    • Filtering
    • ReLU Layer
    • Pooling
    • Data Flattening
    • Fully Connected Layer
    • Predicting a cat or a dog
    • Saving and Loading a Model
    • Face Detection using OpenCV

    Image Processing and Computer Vision

    • Introduction to Vision
    • Importance of Image Processing
    • Image Processing Challenges – Interclass Variation, ViewPoint Variation, Illumination, Background Clutter, Occlusion & Number of Large Categories
    • Introduction to Image – Image Transformation, Image Processing Operations & Simple Point Operations
    • Noise Reduction – Moving Average & 2D Moving Average
    • Image Filtering – Linear & Gaussian Filtering
    • Disadvantage of Correlation Filter
    • Introduction to Convolution
    • Boundary Effects – Zero, Wrap, Clamp & Mirror
    • Image Sharpening
    • Template Matching
    • Edge Detection – Image filtering, Origin of Edges, Edges in images as Functions, Sobel Edge Detector
    • Effect of Noise
    • Laplacian Filter
    • Smoothing with Gaussian
    • LOG Filter – Blob Detection
    • Noise – Reduction using Salt & Pepper Noise using Gaussian Filter
    • Nonlinear Filters
    • Bilateral Filters
    • Canny Edge Detector - Non Maximum Suppression, Hysteresis Thresholding
    • Image Sampling & Interpolation – Image Sub Sampling, Image Aliasing, Nyquist Limit, Wagon Wheel Effect, Down Sampling with Gaussian Filter, Image Pyramid, Image Up Sampling
    • Image Interpolation – Nearest Neighbour Interpolation, Linear Interpolation, Bilinear Interpolation & Cubic Interpolation
    • Introduction to the dnn module
      • Deep Learning Deployment Toolkit
      • Use of DLDT with OpenCV4.0
    • OpenVINO Toolkit
      • Introduction
      • Model Optimization of pre-trained models
      • Inference Engine and Deployment process
Get full course syllabus in your inbox

    Introduction to Cloud Computing

    • In this module, you will learn what Cloud Computing is and what are the different models of Cloud Computing along with the key differentiators of different models. We will also introduce you to virtual world of AWS along with AWS key vocabulary, services and concepts.
      • A Short history
      • Client Server Computing Concepts
      • Challenges with Distributed Computing
      • Introduction to Cloud Computing
      • Why Cloud Computing
      • Benefits of Cloud Computing
Get full course syllabus in your inbox

Get full course syllabus in your inbox

+ More Lessons

Need Customized curriculum?

Mock Interviews

Prepare & Practice for real-life job interviews by joining the Mock Interviews drive at Croma Campus and learn to perform with confidence with our expert team.Not sure of Interview environments? Don’t worry, our team will familiarize you and help you in giving your best shot even under heavy pressures.Our Mock Interviews are conducted by trailblazing industry-experts having years of experience and they will surely help you to improve your chances of getting hired in real.
How Croma Campus Mock Interview Works?
Request more informations

Phone (For Voice Call):

+91-971 152 6942

WhatsApp (For Call & Chat):

+919711526942

SELF ASSESSMENT

Learn, Grow & Test your skill with Online Assessment Exam to
achieve your Certification Goals

right-selfassimage

FAQ's

Croma Campus provides the best Artificial Intelligence Training in Delhi as per the current industry standards. Our training programs will enable professionals to secure placements in MNCs. Croma Campus is one of the most recommended Artificial Intelligence Training Institute in Delhi that offers hands-on practical knowledge / practical implementation on live projects and will ensure the job with the help of advance level Artificial Intelligence Training Courses.

Artificial Intelligence (AI) helping for a job like Software analysts and developers, Computer scientists and computer engineers, Algorithm specialists, Research scientists and engineering consultants, Mechanical engineers and maintenance technicians.

Croma Campus Artificial Intelligence Training in Delhi is conducted by specialist working certified corporate professionals having 8+ years of experience in implementing real-time Artificial Intelligence projects. Candidates will implement the following concepts under Artificial Intelligence: Fundamentals of Reinforcement Learning, Q-Learning Intuition, Building a Self-Driving Car, Creating the environment, Building an AI on real-time projects along with Artificial Intelligence Placement Training modules like aptitude test preparation, etc.

Artificial Intelligence Course: Fundamentals Of Q-Learning Intuition, Reinforcement Learning, Building a Self-Driving Car, Creating the environment, Building an AI.

The ways to connect Croma Campus.

  • Phone number: +91-120-4155255, +91-9711526942
  • Email: info@cromacampus.com
  • Address: G-21, Sector-03, Noida (201301)

The average fee range is depending on the course duration, mode & the selected Artificial Intelligence Institute in Delhi.

Career Assistancecareer assistance
  • - Build an Impressive Resume
  • - Get Tips from Trainer to Clear Interviews
  • - Attend Mock-Up Interviews with Experts
  • - Get Interviews & Get Hired
Are you satisfied with our Training Curriculum?

If yes, Register today and get impeccable Learning Solutions!

man

Training Features

instructore

Instructor-led Sessions

The most traditional way to learn with increased visibility,monitoring and control over learners with ease to learn at any time from internet-connected devices.

real life

Real-life Case Studies

Case studies based on top industry frameworks help you to relate your learning with real-time based industry solutions.

assigment

Assignment

Adding the scope of improvement and fostering the analytical abilities and skills through the perfect piece of academic work.

life time access

Lifetime Access

Get Unlimited access of the course throughout the life providing the freedom to learn at your own pace.

expert

24 x 7 Expert Support

With no limits to learn and in-depth vision from all-time available support to resolve all your queries related to the course.

certification

Certification

Each certification associated with the program is affiliated with the top universities providing edge to gain epitome in the course.

Showcase your Course Completion Certificate to Recruiters

  • checkgreenTraining Certificate is Govern By 12 Global Associations.
  • checkgreenTraining Certificate is Powered by “Wipro DICE ID”
  • checkgreenTraining Certificate is Powered by "Verifiable Skill Credentials"
certiciate-images

Students Placements & Reviews

speaker
Vikash Singh Rana
Vikash Singh Rana
speaker
Shubham Singh
Shubham Singh
speaker
Saurav Kumar
Saurav Kumar
View More arrowicon

WHAT OUR ALUMNI SAYS ABOUT US

View More arrowicon
sallerytrendicon

Get Latest Salary Trends

×

For Voice Call

+91-971 152 6942

For Whatsapp Call & Chat

+91-9711526942
1

Ask For
DEMO